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ON THE COMPUTATIONAL COMPLEXITY OF STOCHASTIC SCHEDULING PROBLEMS

Michael Pinedo

Georgia Institute of Technology

ABSTRACT

In this paper we consider stochastic scheduling models where all
relevant data (like processing times, release dates, due dates,
etc.) are independent random variables, exponentially distributed.
We are interested in the computational complexity of determining
optimal policies for these stochastic scheduling models. We give
a number of e::amples of models in which the optimal policies can
be determine- by polynomial time algorithms while the determinis-
tic counterparzs of these models are NP-complete. We also give
some exainples of stochastic scheduling models for which there
exists no pc2.:--_omial time algorithm if P N hP.

1. INFTODUCTI ON

In the last decade deterministic scheduling problems have received
substantial attention. Two directions have always been very im-
portant in the investigation of a deterministic scheduling prob-
lem, namely:

(1) The search for algorithms that determine the optimal sequence

efficiently, preferably in polynomial time.
(ii) The investigation of the computational complexity, i.e. deter-

mining whether or not the problem is NP-complete.
This research has yielded many results. An excellent survey can
be found in Graham, Lawler, Lenstra, Rinnooy Kan (3). Noting
that the deterministic distribution can be considered as a special
case of an arbitrary stochastic distribution, many of these results
can provide a key to the structure of the more general stochastic
scheduling problems. Another special distribution is the exponen-
tial distribution. Stochastic scheduling models with exponentially
distributed data (like processing times, release dates, due dates,
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etc.) usually have a very nice structure, too.

In this paper whenever we refer to a specific stochastic
scheduling problem we assume, unless otherwise specified, a prob-
lem with all data independent exponentiaZly distributed. Of
these scheduling models the objective functions usually have to
be minimized in expectation. Our goal is either to obtain good
(i.e. polynomial time) algorithms for determining the optimal
policies within specific classes of policies or to show that no
fast algorithms exist (assuming P J NP). We believe that it may
be of interest to compare the computational complexity of these
stochastic scheduling problems with the computational complexity
of their deterministic counterparts. For a number of models the
algorithms that determime the optimal policies in the determinis-
tic and the stochastic versions are equally good. Examples of
such models are F211E(Cmax) and J21 CCmax) where in the determin-
istic as well as in the stochastic version the algorithms are
OCn log n. For some models there is a better algorithm for the
deterministic version; an example is 02!1E(Cmax) where the algo-
rithm for the deterministic version is O(n), while the algorithm
for the stochastic version is not as fast (see (11)). In Section

3 we give sone examples of models of where the deterministic ver-
sion is N"-cocplete and the stochastic version is very easy.

This paper is organized as follows: In Section 2 we give a
short description of various classes of policies, formulations of
stochastic scheduling problems as Markov Decision Processes, le-
vels of complei:ity and how to determine the complexity of these
stochastic scheduling problems. In Section 3 we present six mo-
dels, exhibiting NP-completeness in the deterministic version, but
having polynoaial time algorithms in the stochastic setting. In
Section 4 we present two examples of stochastic models for which
we can show that there exists no polynomial time algorithm to
determine the optimal policies (assuming P NP). In Section 5
we discuss in which direction we intend to continue this research.

2. COMIPLEXITY OF STOCHASTIC SCHEDULING PROBLEMS

In this section we first discuss three classes of policies. Af-
terwards we explain how we intend to investigate the computational
complexity of determining optimal policies in any of these classes.

2.1. Classes of Policies

The first class of policies is the class of static policies.
Here the decision-maker decides at t = 0 what his policy will be
during the process; he is not allowed to make any subsequent
changes. The optimal policy in this class often (but not always)
prescribes a "list" schedule, i.e. whenever a machine becomes
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idle, the decision-maker starts processing the next job on the
list independent of the state of the system at that moment, Con-
sider the following example: lipj-exp(l), dj-exp(p )JIEQE w U~1.
As the processing times of all the jobs are exponentially disiri-

buted with mean one, the expected penalty caused by a particular
job not meeting its due date only depends on the number of jobs
that are to be processed before this one. Determining the opti-
mal policy in the class of static policies reduces easily to a
(deterministic) assignment problem. By solving this assignment
problem the decision-maker obtains a list in which to process the
n jobs. Determining the optimal policy in the class of static
policies usually is equivalent to a deterministic problem. Hence,
in determining whether or not this can be done in polynomial time,
techniques similar to those used for deterministic scheduling
problems can be used. Examples in Section 4 illustrate this
point. Determining the optimal static policy is important be-
cause this optimal policy may be related to the optimal policy in
another class of policies.

The second class of policies is the class of nonpreenrptioe
dyna'nic policies. These can be described as follows: Under such
a policy the decision-maker is allowed to determine his action at
specified decision moments (e.g. when a job has finished its pro-
cessing on a machinel making use of any newly available informa-
tion. However, he is not allowed to interrupt the processing of
any job already started.

The third class of policies is the class of preemptive dyna-
rim policies. These are similar to our second class of policies,
but now the decision-maker is allowed to interrupt the processing
of any job at any time. Experience seems to show that determining
the opti policy in the class of preemptive dynamic policies is
usually easier than determining the optimal policy in the class of
nonpreemptive dynamic policies.

2.2 Markov Decision Processes and Levels of Complexity

A stochastic scheduling problem with all data exponentially dis-
tributed and in which the decision-maker is allowed at every
decision moment to take all available information into account
can be described as a Markov Decision Process in continuous time
with a finite state space, finite action space and one absorbing
state. It is a well known fact that for these MDP's there exists
an optimal stationary policy.. This formulation as an MDP can be
done for the preemptive as well as.for the nonpreemptive case.

For these MDP's we will make a distinction between three
levels of complexity. Firstly, the ideal situation would be to
have an algorithm that determines the optimal actions for all
states simultaneously in polynomial time. Secondly, for someI
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problems there may be an algorithm that determimes the optimal
action in any arbitrary state in polynomial time, but that can-
not determine the optimal actions in aZt states in polynomial
time (the number of states often grows exponentially with the
size of the problem). However, one has to keep in mind now that
during its realization the process, from beginning to end, usually
visits only a limited number of states, a number that usually is
polynomial in the size of the problem. So, if the decision-
maker has an algorithm that determines the optimal action in an
arbitrary state in polynomial time and the number of times he
uses this algorithm is polynomial in the size of the problem, the
total number of computations the decision-maker has to perform
during the process is still polynomial in the size of the prob-

lem. Gifford (2) has developed an algorithm for a stochastic
scheduling problem where this is the case. Thirdly, for some
problems it may not even be possible to develop an algorithm
that determines the optimal action in an arbitrary state in poly-
nomial time. The examples of Section 4 are of this kind.

2.3. Determining the Computational Complexity

We present here two approaches that may be useful when trying to
determine the computational complexity of stochastic scheduling
problems.

(i) Fo-7.::tion of the arkov Decision Process as a Linear
Progra--. I t - * a well known fact that determining the optimal
actions in an '-!D? can be done via Linear Programming. It has
been show-n recently that there exists a polynomial time algorithm
to solve an L? (5). This, of course, does not imply that there
exists a poly=:mial time algorithm to determine the optimal
actions in all states of an M'WP, as the transformation from the
hDP into an L may not be possible in polynomial time. For most
scheduling problems the size of the LP (the number of variables
and constraints) grows exponentially in the size of the problem.
However, this does not imply that there does not exist a poly-
nomial time algorithm for the scheduling problem. So this ap-
proach appears to be useful only when the size of the LP grows
polyomiaily in the size of the scheduling problem, because then

we know we have a polynomial time algorithm. The following ex-
ample illustrates this: Consider m machines and n jobs with pre-
cedence constraints. These precedence constraints have the form
of c(c > m) chains. The jobs have arbitrary independent exponen-
tial distributions, not necessarily identical. This XDP can be

formulated as an LP for which it can be shown that, when c is
fixed, the number of variables and constraints increase polyno-
mially in n. So there exists an algorithm for determining the
optimal actions that is polynomial in n. For the deterministic
counterpart of this problem one can find easily an algorithm,
based on dynamic programming, that is polynomial in n.

I
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I(ii) Relating Optimal Dynamic Policies with Optimal Static
Policies. Determining whether the optimal static policy can be
found in polynomial time is relatively easy, as this is basically
a deterministic problem that can be approached with conventional
techniques. Determining whether the optimal actions of an MDP
can be found in polynomial time tends to be harder. However, it
is possible to find special circumstances in which the optimal
actions in a subset of the states have a specific one-to-one
correspondence with the optimal list in the static problem. InIcase the optimal static policy cannot be determined in polynomial
time we know that, if we indeed can establish a certain relation-
ship between the actions of an optimal dynamic policy and the

Ilist given by the optimal static policy, the optimal dynamic
policy cannot be determined in polynomial time either. The two
examples of Section 4 illustrate this.

3. EXAYMPLES OF STOCHASTIC SCHEDULING PROBLEMS THAT ARE EASY

IIn this section we discuss six models; the deterministic versions
of five of these models are known to be NP-complete. Of the re-
maining one the complexity has not yet been determined, but the
problem appears to be not too easy. The stochastic versions, with
processing times exponentially distributed, of all of these models
turn out to be very easy to analyze.

3.1. P-- a and its Stochastic Counterpart

In this noden jobs have to be scheduled on m identical parallel
machines in order to minimize the makespan. Karp (4) showed that
the deterministic version of this problem is NP-complete. Sev-
eral researchers showed independently that when the processing
times are emponentially distributed the Longest Expected Proces-
sing Time first (LEPTJ policy minimizes the expected makespan.
This LEPT policy is optimal in all three classes of policies dis-
cussed in Section 2.

3.2. P21res l1C and its Stochastic Counterpart

j In this model we have two machines and n jobs. There is one
resource of which there is an amount s. Job j needs when being
processed an amount sj of this resource. At any time during the
process the total amount of resource needed by the two jobs being
processed, may not be larger than s. It is clear that there is no
polynomial time algorithm for the deterministic version of this

* problem, as there exists no polynomial time algorithm for P211
Cmax. Pinedo (13) considered the problem with exponentially dis-
tributed processing times. He assumed the following agreeability
condition: Whenever for any two jobs I/A i > I/A then s i > s.
A nonpreemptive policy was shown to be optimal in all three classes
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Iof policies. This nonpreemptive policy can be determined in
O(n log n) time.

3.3. 1ld. dIE w.U. and its Stochastic Counterpartsdj 3 3

In the deterministic version of this model we have n jobs, all
with the same deadline. If job j does not meet this deadline the
decision-maker incurs a penalty w-. This problem is equivalent
to the knapsack problem and therelore NP-complete (see Karp (4)).
Of the stochastic version there are two variants: Firstly, all

deadlines are i.i.d. random variables with arbitrary distribution
(not necessarily exponential). Secondly, all jobs have the same
deadline and this deadline is an arbitrarily distributed random
variable.

Derman et al (1) have shown that in order to minimize the
expected objective in all three classes of policies for the second
variant the decision-maker has to order the jobs in decreasing
order of wj).j where i/Xj is the mean of the exponentially distri-
buted processing time of job j. Pinedo (12) showed that for the
first variant the same policy minimizes the expected objective in
the class of static policies.

I 3.4. Plid = dIE U. and its Stochastic Counterparts

This model is similar to the model discussed in 3.3. The only

difference lie in the fact that instead of one machine we now
have m machi as in parallel. It is clear that there exists no
polynomial t4-e algorithm for the deterministic version of this

I problem either. Of the stochastic version with exponentially
distributed processing times there are again two variants: First-
ly all deadlines are i.i.d. random variables with arbitrary dis-
tribution (not necessarily exponential). Secondly, all jobs have
the sa-e deailine and this deadline is an arbitrarily distributed
random variable. Pinedo (12) has shown that for the first var-
iant the policy that schedules the task in increasing order of
their expected processing times minimizes the expected objective
in the class of static policies provided the distribution func-
tion of the deadline is concave. He also showed that for the
second variant the same policy is optimal in all three classes
of policies, again provided the distribution function being
concave.

3.5. ld. = dIE w.T. and its Stochastic Counterparts

'J ' 3-3

In the deterministic version of this model all jobs have again
the same deadline. If job j does not meet the deadline the
decision-maker incurs a penalty wjTj( = wj(Cj-dj)). The computa-
tional complexity of this problem has not yet been determined, but

I Lawler and Moore (8) developed a pseudo-polynomial algorithm for

I
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this problem. Again two variants have been considered for the
stochastic version. Firstly, all deadlines are i.i.d. random
variables, with arbitrary distribution. Secondly, all jobs have
the same deadline with arbitrary distribution. Pinedo (12)
showed that for both variants the optimal policy in the class of
static policies instructs the decision-maker to schedule the jobs
in decreasing order of wj)j. This policy is also optimal in the
class of dynamic policies for the second variant. In (12) more
general models are discussed; models where the distributions of
the deadlines are not identical but "agreeable" in the following
sense: whenever wjlj > wi i the distribution of the deadline of
job j is stochastically smaller than the distribution of the
deadline of job i.

3.6. llpmtn, rJ E w C and its Stochastic Counterpart

In the deterministic version there are n jobs released at given
release dates and the sum of the weighted completion times has to
be minimized. Labetoulle et al (6) have shown that this problem
is NP-complere. Pinedo (12) considered the stochastic version
where the release dates have an arbitrary joint distribution. The
class of preemptive dynamic policies was considered. In this
class the following policy was shown to be optimal: At any point
in time, of the jobs that already have been released the one with
the highest value of wjAj is released, the machine has to be pre-
empted and this new job has to be put on the machine.

3.7. Additional Remarks

(i) In the stochastic models of 3.3 and 3.5 it is possible to
include release dates in such a way that the optimal preemptive
dynamic volicy still can be determined easily. Consider for
example the following extension: All due dates are identical and
the release dates may be any combination of time epochs prior to
this due date.

(ii) Gifford (2) considered the models of 3.2 and 3.3 with due
dates nonidentically exponentially distributed. He developed
algorithms which in some cases are polynomial time, in other
cases not.

(iii) There are of course more models of which the deterministic
version is NP-complete and for which in the stochastic setting
there exists a polynomial time algorithm. Pinedo (10) and Weiss
(14) considered a problem in reliability theory where this is the
case.

I
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4. EXAMPLES OF STOCHASTIC SCHEDULING PROBLEMS THAT ARE HARD

In this section we present two examples of stochastic scheduling
problems for which we can show that, if P J NP, no polynomial
time algorithm exists to determine the optimal policies in any
of the three classes of policies mentioned in Section 2. In our
approach we follow the method described in Section 2, i.e. we
first prove that the static problem cannot be solved in polynomial
time, after that we show that there exists a one-to-one correspon-
dence between the optimal list of the static problem and the opti-
mal actions of an appropriately chosen subset of states in the
preemptive or nonpreemptive dynamic problems. We will not give
rigorous proofs in this section, as the technical details are
rather lengthy; the complete proofs will appear elsewhere. In
both examples precedence constraints play an important role; with-
out these precedence constraints the problems are easy. The first
example is a rather straightforward extension of a deterministic
result. The second example is more complicated.

4.1 11prec, D.-exp(l)IE(E w.C.)

In this model we have one machine and n jobs, each of these jobs
having a processing time exponentially distributed with mean one.
There are precedence constraints which may have an arbitrary form.
The expected sum of the weighted completion times has to be mini-
mized. Lawlar (7) considered the case where all the jobs have
identical deterministic processing times, i.e. iprec, p- = 11
Y wjCj. He shzi.ed through a reduction from LINEAR ARRAN6EXENT
that this prozem is NP-complete even if wjiel,2,3} for all j.
One can show that changing the processing times of the jobs from
deterministic with mean one to exponential with mean one does
not change tlne optimal sequence of the jobs and that this sequence
is an optia- policy in all three classes of policies. This im-
plies that, if P # NP, there exists no polynomial time algorithm
to determine the optimal policy for this stochastic scheduling
problem.

4.2. l1prec, D.-exp(p), d -exp( .) E(F U.).'

We have again one machine and n jobs. Job j has an exponentially
distributed processing time with mean i/p and an exponentially
distributed due date with mean I/p.. There are precedence con-
straints and the expected number o? jobs overdue has to be mini-
mized. We first will show that finding the optimal static policy
cannot be done in polynomial time. Suppose job j is the kt f job
to be processed. The probability that job j will not meet its
deadline is I - (p/(p+Ij))k. Now let l/p >> n/p for all j. The
probability that job j will not meet its deadline is then approx-
imately vi-k/p. The objective to be minimized is the expected
number of jobs that do not meet their deadline; this may be
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approximated by E Pj-E(Cj) where ECCj- is the expected completion
time of job j. This objective, however, after replacing jj" with.
wV is identical to Lawler's objective in the problem lTprec,
pi-exp(p) EL! U.), when l/Pj >> n/p for all j, results in a se-I quence that is identical to an optimal sequence in Lawler's
llprec, pj = lII wjCj. This implies that the optimal static pol-
icy cannot be determined in polynomial time.

Before investigating the optimal dynamic policies for ljprec,
pj-exp(p) IEC( Uj), we consider the following model, which at first
gight may seem unrelated: We have one machine and n jobs witl.
identical deterministic processing times of one time unit. Of
only one of these jobs a due date will occur during IO,n]; of n-l
jobs no due date will occur. The due date will be job j's with
probability q-. This due date is uniformly distributed over
[O,n]. There are arbitrary precedence coustraints. The objective
is to maximize the probability that no job will be overdue. It
can be shown that the optimal static policy in this model is
equivalent to an optimal sequence in Lawler's deterministic prob-
lem ljprec, n TE = | wjCj (the qj's play the role of the wj's).
It can also b'e shown that this optimal static policy is also op-
timal in the classes of preemptive and nonpreemptive dynamic pol-
icies. In the following paragraph we will refer to the above
model as the One Due Date Model.

Now ,7e ccnsider the dynamic versions of l1prec, p.-exp(p),
d~expC!)E(Z U.. Let E p = a, where a is small and an/p is

very sma l. >iaking the rates )i,i=l,...,n small has the follow-
ing two effec:a: Firstly, the event of any due date occurring

during the t--e needed to process the n jobs has a very low pro-
bability. Secondly, if a due date does occur, the time it occurs
is approximat-ely uniformly distributed over 1O,T], where T is the
random t_ne needed to process all jobs. It can be shown that,
for n sufficiently large, the probability of no due date occur-
ring during [Q,T] is 1 - an/p + OCctn/p) ), the probability of
one due date occurring is an/p + O(Canlp)2) and the probability
of two or more due dates occurring is QCCan/p)2). The problem
can be fo-r.ula-ed as an DP in continuous time; optimal actions
have to be determined in all possible states, a state being char-
acterized by the set of jobs already processed and the set of due
dates already occurred. It can be shown through some rather

technical bounding arguments that in order to determine the opti-
mal action in a state one may base one's decision solely on the
event of exactly one due date occurring in the remaining time
needed to finish the process. This is intuitive as in the case
of no due dates occurring any sequence would be optimal, and the
probability of two or more due dates occurring is very small in
comparison with the probability of one due date occurring. But
the problem conditional on one due date occurring is approximately

equiValent to the One Due Date Model. Suppose the optimal job
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sequence for the One Due Date Model is jl,j 2 ,'',jn (which repre-

sents simultaneously the optimal static policy as well as the op-

timal preemptive and nonpreemptive dynamic policy) then it can be

shown, through bounding arguments, that when the MDP is in a

state with jobs Jlj2,'-*,jk finished and all due dates still to

come, the optimal action is to start job jk+l" Now one can rea-

son that if there exists a polynomial time algorithm to determine

the optimal actions in the states of the M4DP there also exists a

polynomial time algorithm for model M. As, if P J NP, there

exists no polynomial time algorithm for model M, there does not

exist a polynomial time algorithm for the MDP either.

5. CONCLUSION

This paper should provide an indication of the direction in which

we are currently working. To this extent, it constitutes a sort

of progress report. Presently, we are dealing with stochastic

scheduling problems with due dates; this research is far from

complete. Hot ever, Gifford (2), as suggested before, has ob-

tained some interesting results with regard to algorithms for

these problem.s. The following aspects of these due date prob-

lems are currently under investigation: The influence of proces-

sing time distributions other than exponential (we are thinking

here mainlv fr distributions with a Decreasing Failure Rate (DFR)).

In addition, z-e influence of special classes of precedence con-

straints, namely series-parallel (see (7)) or chains (see (8)) is

also worthy of investigation as well as the development of bounds

on the expecZ- values of the objective functions when processing

times are ex.:-nential.
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